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Abstract

A numerical experiment has been conducted to determine the interfacial convective heat transfer coe�cient in the

two-energy equation model for convection in porous media, which is needed when the local thermal equilibrium be-

tween the ¯uid and solid phases breaks down. The similarity of periodically fully developed temperature pro®les allows

one to perform a numerical experiment using only a single structural unit for determining the fully developed heat

transfer coe�cient without any empiricism. A universal correlation for the Nusselt number, which agrees well with

available experimental data, has been established using the results obtained for a wide range of porosity, Prandtl and

Reynolds numbers. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

There are certain situations where net heat transfer

from one phase to another phase takes place in saturated

porous media such that the assumption of local thermal

equilibrium breaks down. The need for two-energy

equation models (allowing two temperatures in two

di�erent phases) has long been recognized [1].

When there is a signi®cant heat generation occurring

in any one of the two phases (solid or ¯uid), the tem-

peratures in the two phases are no longer identical [2].

The assumption of local thermal equilibrium must be

discarded when we analyze the entrance region of

packed column where a hot gas ¯ows at a high speed.

Many of unsteady problems associated with saturated

porous media need treatments, which allow heat transfer

from one phase to another. When the temperature at the

bounding surface changes signi®cantly with respect to

time, and when solid and ¯uid phases have signi®cantly

di�erent heat capacities and thermal conductivities, the

local rate of change of temperature for one phase di�ers

signi®cantly from that for the other phase [3].

Moreover, Quintard [4] argues that assessing the

validity of the assumption of local thermal equilibrium is

not a simple task, since the temperature di�erence be-

tween the two phases cannot easily be estimated, and

suggests that the use of a two-energy equation model is a

possible solution to the problem. Numerous other

physical situations where local thermal equilibrium fails

are cited by Quintard and Whitaker [5].

Two energy equation models have been introduced

heuristically in the literature [6]. These heuristic model

equations ®t in the following form:

eqf Cpf

ohT if
ot

"
� h~uif � r Th if

#
� r � ��kf

eff � r Th if � hsf asf Th is
�

ÿ Th if
�
; �1�

1� ÿ e�qsCs

o Th is
ot
� r � ��ks

eff � r Th is ÿ hsf asf Th is
�

ÿ Th if
�
;

�2�
where the subscripts (and superscripts) f and s denote

¯uid and solid phases, respectively. h~ui is the volume-

averaged velocity (i.e., Darcian velocity), whereas hT if

International Journal of Heat and Mass Transfer 44 (2001) 1153±1159
www.elsevier.com/locate/ijhmt

* Corresponding author. Fax: +81-53-478-1049.

E-mail address: tmanaka@ipc.shizuoka.ac.jp (A. Nakay-

ama).

0017-9310/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 1 7 - 9 3 1 0 ( 0 0 ) 0 0 1 6 6 - 6



and hT is denote the intrinsically averaged temperature

of ¯uid phase and that of solid phase, respectively, such

that hT if � hT is under local thermal equilibrium.

Moreover, e, ��keff , asf and hsf are the porosity, e�ective

thermal conductivity tensor, speci®c surface area and

interfacial convective heat transfer coe�cient, re-

spectively. In the two-equation model, the interfacial

heat transfer coe�cient hsf and two thermal conductivity

tensors ��k
f

eff and ��k
s

eff need to be determined. Quintard and

Whitaker [5] obtained somewhat di�erent form of the

equations from the point of view of the volume-aver-

aging theory. The major di�erence between their form

and the foregoing heuristic form is the appearance of

additional coupling terms. They claim that these cou-

pling terms are not necessarily negligible. Although their

model appears to be more general than the classical one,

it requires four thermal conductivity tensors in addition

to the interfacial convective heat transfer coe�cient.

Some theoretical attempts of determining these trans-

port coe�cients have been made by Quintard and

Whitaker [5]. However, the unknown transport coe�-

cients as well as part of the formulation itself make it

di�cult and awkward for simulating practical applica-

tions [7]. Viskanta [8] foresees that the classical form

described by Eqs. (1) and (2) will continue to be used

with empirical transport coe�cients.

In this paper, we shall propose a numerical procedure

to determine the macroscopic transport coe�cients such

as hsf purely from a theoretical basis without any em-

piricism. Upon extending the numerical procedure for

thermal equilibrium, developed by Nakayama et al. [9]

and Kuwahara et al. [10], to the case of non-thermal

equilibrium, we will conduct numerical experiments for

a wide range of porosity, Prandtl and Reynolds num-

bers. Noting the similarity of fully developed tempera-

ture pro®les, we shall use only a single structural unit to

simulate a porous medium, and determine the interfacial

heat transfer coe�cient for the asymptotic case in which

the conductivity of solid phase is in®nite.

2. Volume-averaged energy equations and expressions for

transport coe�cients

Let us compare the foregoing Eqs. (1) and (2) of the

classical model with the intrinsic volume-averaged

equations obtained by integrating the individual energy

equations over a representative elementary volume V.

(Note that V 1=3 must be much smaller than a macro-

scopic characteristic length, but at the same time, much

larger than a pore size.) Following Cheng [11] and Na-

kayama [12], we obtain the following macroscopic en-

ergy equations for the two individual phases:

eqf Cpf

o Th if
ot

"
� h~uif � r Th if

#

� r � ekfr Th if
264 � 1

V

Z
Aint

kf T d~Aÿ qf Cpf
hT 0~u0i

375
� 1

V

Z
Aint

kfrT � d~A; �3�

1� ÿ e�qsCs

o Th is
ot
� r � 1ÿ e� �ksr Th is ÿ 1

V

Z
Aint

ksT d~A
� �

ÿ 1

V

Z
Aint

kfrT � d~A; �4�

Nomenclature

~A surface area vector

Aint total interface between the ¯uid and solid

Cp speci®c heat at constant pressure

Cs speci®c heat of solid

D size of square rod

H size of structural unit

hsf interfacial convective heat transfer

coe�cient

u; v microscopic velocity components in the x- and

y-directions

T microscopic temperature

p microscopic pressure

k thermal conductivity

Re Reynolds number based on H and the

macroscopically uniform velocity

ReD Reynolds number based on D and the

macroscopically uniform velocity

Pe Peclet number based on H and the

macroscopically uniform velocity

PeD Peclet number based on D and the

macroscopically uniform velocity

V elementary representative volume

x; y Cartesian coordinates

e porosity

m kinematic viscosity

q density

Subscripts and superscripts

e� e�ective

dis dispersion

f ¯uid

s solid

tor tortuosity

Special symbols

h i volume-average

h if ;s intrinsic average
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where

/h i � 1

V

Z
Vf

/dV � e /h if �5a�

/0 � /ÿ /h if : �5b�
Aint is the total interface between the ¯uid and solid,

while d~A is its vector element pointing outward from the

¯uid side to solid side. The continuity of heat ¯ux at

the interface is implemented in the above equation. The

comparison of the volume-averaged Eqs. (3) and (4)

against the heuristic Eqs. (1) and (2) reveals the fol-

lowing relationships:

��k
f

eff � r Th if � ekfr Th if � 1

V

Z
Aint

kf T d~Aÿ qf Cpf
hT 0~u0i;

�6�

��k
s

eff � r Th is � 1� ÿ e�ksr Th is ÿ 1

V

Z
Aint

ksT d~A; �7�

hsf �
1
V

R
Aint

kfrT � d~A
Th is ÿ Th if

� � : �8�

Shortly, we propose a numerical model describing a

microscopic structure of porous medium, for which we

shall carry out direct numerical (i.e., pore scale) com-

putations using the ®rst principles. By substituting the

direct numerical results into the foregoing expressions,

we can determine the e�ective thermal conductivity

tensors and the interfacial heat transfer coe�cient of

interest.

In the previous numerical study of thermal disper-

sion, Kuwahara et al. [10,13] found that the thermal

dispersion term ÿqf Cpf T 0~u0h i overwhelms the other two

terms resulting from the molecular di�usion and tortu-

osity in Eq. (6), such that ��k
f

eff � ekf
��I � ��ktor � ��kdis � ��kdis,

as the pore Peclet number PeD becomes su�ciently large.

They established the following correlations for the

transverse and longitudinal components of the thermal

dispersion tensor, which are valid for PeD P 10;
26 ks=kf 6 100 and 0:366 e6 0:96:

kdis� �xx

kf

� 2:1
PeD

1ÿ e� �0:1 ; Longitudinal dispersion;

�9a�
kdis� �yy

kf

� 0:052 1� ÿ e�1=2PeD; Transverse dispersion:

�9b�
The foregoing correlations obtained from the numerical

experiments agree quite well with the experimental data

reported by Fried and Combarnous [14]. In what fol-

lows, we shall consider a numerical model and solution

procedure to determine the interfacial heat transfer co-

e�cient, for which a great deal of uncertainty and in-

consistency were found among the experimental data

reported by a considerable number of sources [2]. No

numerical experiments of this kind seem to have been

reported elsewhere.

3. Numerical model and periodic boundary conditions

Fluid particles experience complex three-dimensional

motions as passing through a microscopic porous

structure. The macroscopic hydrodynamic and thermo-

dynamic behavior of practical interest can be obtained

from the direct application of the ®rst principles to vis-

cous ¯ow and heat transfer at a pore scale. In reality,

however, it is impossible to resolve the details of the ¯ow

and heat transfer ®elds within a real porous medium,

even with a most powerful super-computer available

today. Nakayama et al. [9] and Kuwahara et al. [10]

modeled a porous medium in terms of obstacles ar-

ranged in a regular pattern, and solved the set of the

microscopic governing equations, exploiting periodic

boundary conditions.

Three-dimensional models are much more relevant

than two-dimensional ones for simulating ¯ows through

porous media. However, such three-dimensional com-

putations are extremely expensive and time-consuming,

even using a periodic structural model. Fortunately, a

series of our numerical investigations using both two-

and three-dimensional models [15] reveal that the two-

dimensional models lead to the expressions for the

permeability almost identical to those obtained using the

three-dimensional models. Furthermore, the thermal

dispersion predicted using a two-dimensional model

[10,13] is found very close to what has been exper-

imentally observed. Yet, it is not clear how well the

two-dimensional model performs for determining the

interfacial convective heat transfer coe�cient. Although

there is a certain limitation to it, a two-dimensional

model can be exploited to elucidate complex ¯ow and

heat transfer characteristics associated with a porous

medium. We shall extend the numerical procedure based

on a two-dimensional model to determine the interfacial

convective heat transfer coe�cient.

Let us consider a macroscopically uniform ¯ow

through an in®nite number of square rods placed in a

staggered fashion, as shown in Fig. 1. All square rods,

which may be regarded as heat sinks (or sources), are

isothermal and maintained at a constant temperature Tw,

which is lower (or higher) than the bulk mean temper-

ature of the ¯owing ¯uid. In other words, we consider an

asymptotic case in which the thermal conductivity ratio

ks=kf is in®nitely large.

The representative elementary volume V, which

should be smaller than a macroscopic characteristic
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length, can be taken as 2H � H for this periodic struc-

ture. Due to the periodicity of the model, only one

structural unit as indicated by dashed lines in the ®gure

may be taken as a calculation domain. The governing

equations for the ¯uid phase are given as follows:

r �~u � 0; �10�

�r �~u�~u � ÿ 1

q
rp � mr2~u; �11�

qf Cpf
r � �~uT � � kfr2T : �12�

At the periodically fully developed stage, the velocity

distribution at the exit of the structural unit must be

identical to that at the inlet, whereas the temperature

pro®le at the exit must be similar to that at the inlet.

(Note that the situation is analogous to the case of

forced convection in a channel with isothermal walls,

which will be considered shortly.) Thus, the boundary,

compatibility and periodic constraints are given by

On the solid walls:

~u �~0; �13a�

T � Tw: �13b�

On the periodic boundaries:

~ujx�0 �~ujx�2H ; �14�
Z H=2

ÿH=2

udy

����
x�0

�
Z H=2

ÿh=2

udy

����
x�2H

� Hhj~uji; �15�

T� ÿ Tw�jx�2H � s T� ÿ Tw�jx�0; �16�

where

s �
R H=2

ÿH=2
u T ÿ Tw� �dyjx�2HR H=2

ÿH=2
u T ÿ Tw� �dyjx�0

� TB ÿ Tw� �jx�2H

TB ÿ Tw� �jx�0

: �17�

TB�x� is the bulk mean temperature of the ¯uid. Com-

putations can be made using the dimensionless equa-

tions based on the Darcian velocity jh~uij, the length of

structural unit H and the temperature di�erence

�TB�0� ÿ Tw� as reference scales. For carrying out com-

putations for a parametric study, it may be convenient

to use the Reynolds number based on H as

Re � jh~uijH=m, which is related to the Reynolds number

based on D as ReD � jh~uijD=m � �1ÿ e�1=2Re, via

e � 1ÿ �D=H�2.

4. Method of computation and preliminary numerical

consideration

The governing equations are discretized by integrat-

ing them over a grid volume. SIMPLE algorithm for the

pressure±velocity coupling, as proposed by Patankar

and Spalding [16] is employed. Convergence is measured

in terms of the maximum change in each variable during

an iteration. The maximum change allowed for the

convergence check is set to 10ÿ5, as the variables are

normalized by appropriate references. A fully implicit

scheme is adopted with the hybrid di�erencing scheme

for the advection terms. Further details on this numer-

ical procedure can be found in Patankar [17] and

Nakayama [12].

All computations have been carried out for a one-

structural unit 2H � H using non-uniform grid ar-

rangements with 90� 45, to ensure that the results are

independent of the grid system. The Reynolds number

was varied from 10ÿ2 to 103 and the porosity from 0.36

to 0.96, whereas the Prandtl number was varied from

10ÿ2 to 102. All computations were performed using the

computer system CONVEX 220 at Shizuoka University

Computer Center.

Before carrying out numerical experiments to deter-

mine hsf , the validity of the present numerical procedure

based on the periodic boundary conditions must be

substantiated. Thus, the preliminary computations have

been conducted for forced convective ¯ow in a channel,

whose upper and lower wall surfaces are maintained at a

constant temperature. We expect that the heat transfer

coe�cient approach its fully developed value, as the

Graetz number becomes su�ciently large downstream.

Consider a short segment of an in®nitely long chan-

nel, given by the length L and the height H, as shown in

Fig. 2. Iterative calculations were carried out such that

the resulting velocity and temperature ®elds satisfy the

boundary conditions and periodic constraints given by

Eqs. (13)±(17). (Note that the dimensionless velocity u�

Fig. 1. Physical model and its coordinate system.
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and temperature T � pro®les at the inlet must be

corrected iteratively such that
R 1=2

ÿ1=2
u� dy� � R 1=2

ÿ1=2

u�T � dy� � 1.) It can easily be shown that the unknown

similarity parameter s is uniquely related to the fully

developed Nusselt number as

Nu � hFD 2H� �
kf

� qf Cpf
uBH 2

kf L
ln

1

s

� �
: �18�

It has been con®rmed that the velocity and temper-

ature pro®les become fully developed as convergence is

achieved. In Fig. 3, the numerical results obtained by the

present periodic procedure using the grid system

(40� 40) have been plotted in terms of the fully devel-

oped Nusselt number based on Eq. (18). As increasing

the Reynolds (Graetz) number, the Nusselt number at-

taints its asymptotic value Nu! 7:54 [18], which sub-

stantiates the validity of the present numerical

procedure.

5. Results and discussion

The velocity and temperature ®elds obtained for

three di�erent Reynolds numbers are shown in Figs. 4

and 5, respectively. When the Reynolds number is low

(say Re � 1), the velocity ®eld around a rod (except

front and rear stagnation regions) appears very much

similar to what we observe in a channel, namely the

parabolic pro®le. As increasing Re, recirculation bubbles

expand further behind the rod. When the Reynolds

number is su�ciently high, the thermal boundary layers

cover around the rods as shown in Fig. 5(c), such that

convective heat transfer overwhelms thermal di�usion.

The microscopic temperature results obtained with

Pr � 1 for various values of Re and e are processed using

Eq. (19), and the resulting values of the interfacial con-

vective heat transfer coe�cient hsf are plotted against Re

in Fig. 6. The ®gure suggests that the lower and higher

Reynolds number data follow two distinct limiting lines.

The lower Reynolds number data stay constant for given

porosity, whereas the high Reynolds number data vary in

proportion to Re0:6. The Reynolds number dependency is

the same as what Wakao and Kaguei [2] observed as

collecting and scrutinizing reliable experimental data on

interfacial convective heat transfer coe�cient.

Exhaustive computations were conducted to extract

functional relationships for the interfacial convective

heat transfer coe�cient, assuming the following func-

tional form:

hsf D
kf

� a� bRem
DPrn; �19�

which is in accord with the heuristic correlation of

Wakao and Kaguei [2] for closely packed bed, of particle

diameter D, namely

Fig. 3. Fully developed Nusselt number in a channel (Pr� 1).

Fig. 4. Velocity vectors (Pr� 1).

Fig. 2. Channel ¯ow.
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hsf D
kf

� 2� 1:1Re0:6
D Pr1=3: �20�

The coe�cients a and b obtained for di�erent e are

plotted in Fig. 7 with the abscissa variable �1ÿ e� to

investigate the porosity dependency. Another series of

computations were carried out to investigate the e�ect of

Pr as shown in Fig. 8 in which the exponent n can be

found to be 1/3, in accord with the Wakao and Kaguei

correlation. Thus, the following expression can be es-

tablished from the numerical experiments based on the

two-dimensional model:

hsf D
kf

� 1

�
� 4 1ÿ e� �

e

�
� 1

2
1� ÿ e�1=2Re0:6

D Pr1=3

�0:2 < e 0:9�: �21�
In Fig. 9, the foregoing expression for the interfacial

convective heat transfer coe�cient is compared against

the experimental data for packed beds assembled by

Wakao and Kaguei [2]. (Wakao and Kaguei assembled

both steady and unsteady data together. But, our recent

study based on unsteady numerical experiments suggests

that a separate correlation should be established for

correlating the unsteady data. Also note that Wakao

and Kaguei had to correct some of the experimental

data obtained neglecting the axial di�usion e�ects, so as

to conform with the de®nition as given by Eq. (8).) The

theoretical curves are generated from Eq. (21) with

e � 0:2; 0:3 and 0.4 and presented together in the ®gure.

In the same ®gure, the heuristic expression proposed by

Wakao and Kaguei is shown for reference, which is valid

Fig. 7. E�ect of porosity on intercept a (Pr� 1).

Fig. 8. E�ect of Pr on coe�cient.

Fig. 5. Isotherms (Pr� 1).

Fig. 6. E�ect of ReD on hsf (Pr� 1).
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only for packed beds (e � 0:4). Since we forced the ¯ow

to be steady, the heat transfer coe�cient for the case in

which vortex shedding takes place, may be underesti-

mated to some extent. The agreement between the pre-

sent correlation (e � 0:4) and the experimental data can

be regarded as reasonable, in light of the simplicity of

the present periodic model.

6. Concluding remarks

The correlation for the interfacial convective heat

transfer coe�cient has been established from a series of

numerical experiments based on a two-dimensional

structural model of porous media. A macroscopically

uniform ¯ow through a periodic model of isothermal

square rods was assumed, considering periodically fully

developed velocity and temperature ®elds. Upon noting

the similarity of the temperature pro®le, only a single

structural unit has been taken for a calculation domain.

E�ects of the porosity, Reynolds and Prandtl numbers

on the heat transfer coe�cient have been elucidated. It

has been found that the correlation established purely

from a theoretical basis agrees well with available ex-

perimental data.
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